Quadrangular Bézier Patches in Modeling and Modification of the Curvilinear Boundary Surface in 3D Problems of the Theory of Linear Elasticity in PIES

نویسندگان

  • Eugeniusz Zieniuk
  • Krzysztof Szerszen
چکیده

This paper proposes the use of quadrangular Bézier patches to model and modify the shape of the boundary for linear elasticity problems in 3D. The representation of the boundary in this way derives directly from computer graphics and have been analytically included in developed by the authors parametric integral equation systems (PIES). PIES are the modified classical boundary integral equations (BIE) in which the shape of the boundary can be modeled using a wide range of parametric curves and surfaces. The proposed approach eliminates the need for domain and boundary discretization in the process of solving boundary value problems, in contrast to popular traditional methods like FEM and BEM. On the basis of the proposed approach, a computer code has been written and examined through numerical examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Fixed Grid Finite Element Method to Solve 3D Elasticity Problems of Functionally Graded Materials

In the present paper, applicability of the modified fixed grid finite element method in solution of three dimensional elasticity problems of functionally graded materials is investigated. In the non-boundary-fitted meshes, the elements are not conforming to the domain boundaries and the boundary nodes which are used in the traditional finite element method for the application of boundary condit...

متن کامل

A Novel Method for Numerical Analysis of 3D Nonlinear Thermo-Mechanical Bending of Annular and Circular Plates with Asymmetric Boundary Conditions Using SAPM

This study is the first report of numerical solution of nonlinear bending analysis for annular and circular plates based on 3D elasticity theory with asymmetric boundary conditions using semi-analytical polynomial method (SAPM). Orthotropic annular and circular plates are subjected to transverse loading and 3D bending analysis in the presence of symmetric and asymmetric boundary conditions is s...

متن کامل

Surface Effects on Free Vibration Analysis of Nanobeams Using Nonlocal Elasticity: A Comparison Between Euler-Bernoulli and Timoshenko

In this paper, surface effects including surface elasticity, surface stress and surface density, on the free vibration analysis of Euler-Bernoulli and Timoshenko nanobeams are considered using nonlocal elasticity theory. To this end, the balance conditions between nanobeam bulk and its surfaces are considered to be satisfied assuming a linear variation for the component of the normal stress thr...

متن کامل

Finite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories

In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...

متن کامل

Finite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories

In this article, finite difference method (FDM) is used to solve sixth-order derivatives of differential equations in buckling analysis of nanoplates due to coupled surface energy and non-local elasticity theories. The uniform temperature change is used to study thermal effect. The small scale and surface energy effects are added into the governing equations using Eringen’s non-local elasticity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012